Humans may build aircraft that fly higher and faster than any bird, but they haven't yet matched the elegance of nature's aviators. Where the animals can go from dive to swoop to glide with a flick of the wing, planes rely on clunky, complicated machinery to slow down, turn, or change their angle of flight.
Now, engineers with NASA and MIT believe they can match that aviary flexibility with a new kind of shape-shifting wing that twists and morphs, rendering today's flaps, ailerons, and winglets obsolete. If it works, the system could make aircraft smoother, quieter, and more efficient.
The materials scientists ditched the conventional system—using millions of different bits of metal, composites, and plastics to make a wing—for just eight basic elements. Those resemble kids' building blocks, but are black, slightly squishy, and made of carbon fiber. They assembled an experimental wing about five feet across, wrapping it in a shiny orange flexible skin.
Each of the eight subunits has a different stiffness, so placing the blocks in a specific pattern gives each wing a ‘tunable’ flexibility. Just two small motors are enough to twist the entire wing, adjusting the way it cuts through the air.
“One of the things that we’ve been able to show is that this building block approach can actually achieve better strength and stiffness, at very low weights, than any other material that we build with,” says NASA'S Kenny Cheung, one of the leaders of the project.
Better yet, when the team put the wings onto a dummy plane body and threw it into the wind tunnel at NASA's Langley Research Center in Virginia, the mock aircraft flashed some terrific aerodynamics. “We maxed out the wind tunnel’s capacity,” says Cheung.
No comments:
Post a Comment